No 17-torsion on elliptic curves over cubic number fields

نویسنده

  • Pierre Parent
چکیده

Consider, for d an integer, the set S(d) of prime numbers p such that: there exists a number field K of degree d, an elliptic curve E overK, and a point P in E(K) of order p. It is a well-known theorem of Mazur, Kamienny, Abramovich and Merel that S(d) is finite for every d; moreover S(1) and S(2) are known. In [7], we tried to answer a question of Kamienny and Mazur by determining S(3), and we proved S(3) = {2, 3, 5, 7, 11, 13 and may be 17}. (Actually in loc. cit. we made for some p’s the arithmetic assumption (called (∗)p there) that J1(p)’s winding quotient has rank 0 over Q. This is now known to be true for every p, by Kato’s almost published work

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Families of elliptic curves over cubic number fields with prescribed torsion subgroups

In this paper we construct infinite families of elliptic curves with given torsion group structures over cubic number fields. This result provides explicit examples of the theoretical result recently developed by the first two authors and A. Schweizer; they determined all the group structures which occur infinitely often as the torsion of elliptic curves over cubic number fields. In fact, this ...

متن کامل

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

Torsion of Rational Elliptic Curves over Cubic Fields

Let E be an elliptic curve defined over Q. We study the relationship between the torsion subgroup E(Q)tors and the torsion subgroup E(K)tors, where K is a cubic number field. In particular, we study the number of cubic number fields K such that E(Q)tors ̸= E(K)tors.

متن کامل

Torsion of elliptic curves over cubic fields

Although it is not known which groups can appear as torsion groups of elliptic curves over cubic number fields, it is known which groups can appear for infinitely many non-isomorphic curves. We denote the set of these groups as S. In this paper we deal with three problems concerning the torsion of elliptic curves over cubic fields. First, we study the possible torsion groups of elliptic curves ...

متن کامل

TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS AND SPORADIC POINTS ON X1(n)

We classify the possible torsion structures of rational elliptic curves over cubic fields. Along the way we find a previously unknown torsion structure over a cubic field, Z/21Z, which corresponds to a sporadic point on X1(21) of degree 3, which is the lowest possible degree of a sporadic point on a modular curve X1(n).

متن کامل

Exceptional elliptic curves over quartic fields

We study the number of elliptic curves, up to isomorphism, over a fixed quartic field K having a prescribed torsion group T as a subgroup. Let T = Z/mZ ⊕ Z/nZ, where m|n, be a torsion group such that the modular curve X1(m,n) is an elliptic curve. Let K be a number field such that there is a positive and finite number of elliptic curves E over K having T as a subgroup. We call such pairs (T,K) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008